
ABSTRACT

RESONANT EXTRACTION FOR MU2E

Prudhvi Raj Varma Chintalapati, M.S.
Department of Physics

Northern Illinois University, 2019
Michael J. Syphers, Director

Charged Lepton Flavor Violations (CLFVs) are probed in an attempt to search Beyond

Standard Model (BSM) Physics. The sensitive channel available for experiments around

the world is to probe through muons. No conclusive evidence of CLFV is found so far but

Mu2e experiment at Fermi National Accelerator Laboratory (Fermilab) aims to improve

the current experimental sensitivity by searching for µ−N −→ e−N transition. To provide

the high intensity beam that can be handled to achieve desired sensitivity, slow spill using

resonant extraction is used at the accelerator complex.

Understanding the motivations behind the experiment and simulating the crucial stage

in the beam delivery system is the main focus of this thesis. Work presented here will have

a qualitative analysis and simulation of resonant extraction at the Delivery Ring (Fermilab),

using the beam parameters of Mu2e to study various factors that contribute to the success-

ful beam transport towards the Target and Detector System, including meeting intensity

requirements while keeping the beam losses to a minimum.
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CHAPTER 1

INTRODUCTION

The Standard Model (SM) in particle physics is a widely accepted theory which attempts

to explain the fundamentals of how everything in the Universe works. It is widely accepted

because of its huge success in predicting the existence of fundamental particles and their

interactions before they are observed and confirmed in experiments (the theory’s latest dis-

covery being Higgs boson in 2012 [1]).

Despite its success, the theory has gaps, such as being unable to explain gravity, the hier-

archy problem, dark matter, dark energy, etc. Several theories have been proposed, studied,

and tested in attempts to explain what the standard model couldn’t, but none have had the

same level of success as the SM. Experiments are being designed to generate events which

can either contradict SM, predict a theory beyond Standard Model (BSM), or both simul-

taneously to find answers we don’t currently have. Mu2e[2] is one such experiment under

construction now at Fermi National Accelerator Laboratory (Fermilab). This experiment is

looking for Charged Lepton Flavor Violation (CLFV) transitions which violate flavor physics

in the SM and are a way to look for physics BSM.

In the following sections we will learn about CLFV, theoretical predictions, current ex-

perimental limits and the purpose of Mu2e. Then we will discuss the experimental setup of

Mu2e at Fermilab before finally discussing one of the key techniques that would make the

experiment a reality at Fermilab.

Chapter two will discuss in detail accelerator physics and the final chapter will present

the simulation, results, analysis, and conclusion.
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Figure 1.1: Standard Model of Elementary Particles [3]

1.1 What is Charged Lepton Flavor Violation (CLFV)?

The Standard model (SM) consists of two basic building blocks: fermions (matter parti-

cles) and bosons (force carriers). Fermions are further classified into two groups, quarks and

leptons, of which quarks can interact through strong force while leptons can’t. The SM of

elementary particles is shown in Figure 1.1.

The electron, the muon and the tau are three different flavored charged leptons. Charged

Lepton Flavor Violation is a neutrino-less transition where one flavor charged lepton is

converted to another. The SM doesn’t predict CLFV so the observation of any such event

would lead to new physics beyond the standard model.
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Half a century ago there was a solar neutrino problem which stymied astrophysics. The

Sun’s fusion process produces a large number of electron neutrinos; however, in the 1960s

detectors measured the influx of solar neutrinos at a lower number than predicted by the

SM. Results from the Super-Kamiokande detector later confirmed that these observations

are a result of neutrino oscillations. This confirmation implies that neutrinos have mass and

also shows evidence of flavor changing between leptons [4]. This detection of Lepton Flavor

Violation led to a discussion on the possibility of Charged Lepton Flavor Violation (CLFV).

1.2 Theoretical Predictions of CLFV

Because the availability of muons in accelerators and cosmic radiation is abundant, three

rare processes are being looked into globally to detect CLFV. They are ideal candidates

because their sensitivities are within the experimental limitations. They are:

µ+ −→ e+γ, µ−N −→ e−N, µ+ −→ e+e−e+. (1.1)

We will start with discussion of how extensions to SM predict CLFV before moving to

other theories with more deviations from SM.

1.2.1 Extensions to Standard Model [6][7]

Neutrino oscillations encourage an extension of the SM by including neutrino mass terms.

To accommodate this we can introduce right-handed neutrinos by taking the same Dirac-

mass framework that has been used for other fermions. However, for this theory to work,

Yukawa couplings have to be extremely small (no larger than 10−9) giving rise to another,
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more popular theory called the seesaw mechanism. The seesaw mechanism suggests that

the small masses of neutrinos naturally occur as a result of introducing Majorana fermion

fields and a corresponding mass matrix whose magnitude is large compared to the Dirac

mass matrix. This theory predicts three extremely heavy mass eigenstates for neutrinos, in

addition to the three SM states (where the lighter ones are Majorana fermions). Neutrino

oscillations can result in CLFV only through loop diagrams, an example of which is shown

in Figure 1.2. For the example µ −→ eγ the branching ratio is of the order 10−54 which is

out of current experimental reach.

Figure 1.2: µ −→ eγ, momenta of the particles is given in parenthesis (SM with massive
neutrinos)

Another approach is based on the Higgs field. Different flavors in the lepton family are

a result of the Yukawa couplings of fermion fields with the Higgs scalar field, Φ, and its

vacuum expectation value (vev). Many theories suggest that there exists two Higgs fields

which means the mass of leptons depends on two vevs and more coupling constants. These

theories produce flavor changing neutral currents (FCNC) that generate CLFV at the tree

level, unlike earlier case where there is CLFV at the loop level.
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1.2.2 CLFV in Supersymmetry (SUSY) [6][7][8]

The hierarchy problem of the SM is one of the main motivations for the development of

SUSY. In order to fine-tune the quantum loop corrections for the higgs mass, SUSY builds

a mathematical framework that suggests the existence of a superpartner for each existing

particle in the SM. This means that each fermion has boson as a superpartner and vice

versa. The particle along with its superpartner together form a supermultiplet. By assuming

the existence of supermultiplets, quantum loop corrections to Higgs mass parameter would

vanish because of the relative negative sign between the fermion and boson quantum loop

corrections.

Table 1.1: Particles that would be relevant in CLFV [6]

Gauge Eigenstates SM partners

B̃, W̃ 0, H̃0
u, H̃

0
d γ, Z, h

Bino, neut. Wino and Higgsinos

W̃±, H̃+
u , H̃

−
d W±

charg. Wino and Higgsinos

ẽ±, µ̃±, τ̃± e±, µ±, τ±

ν̃e, ν̃µ, ν̃τ νe, νµ, ντ

RH/LH selectron, smuon, stau

Theories like PeV scale SUSY[9] show no compelling deviation from SM disallowing

FCNC and CLFV. Other SUSY theories do allow CLFV with sensitivities ranging from very

small to present experimental limits. Table 1.1 shows the particles and their superpartners

from SUSY relevant to CLFV. In addition, the correspondences between SM particles and
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their SUSY partners are shown in the table. The couplings between the pairs result in

CLFVs. A few example contributions to µ −→ eγ are shown in Figures 1.3 and 1.4. The

detailed analysis of these contributions can be found in [10].

Figure 1.3: Example contributions to µ −→ eγ. Left to Right: Bino contribution, Wino
contribution and Higgsino Contribution [10]

Figure 1.4: Example contributions to µ−N −→ e−N [10]

Rigorous details of various SUSY models can be found here: [6], [8], [9], [10], [11], [12]

[13].

1.3 Experiments in search for CLFV.

Historically, the search for CLFV is a popular choice among the experiments looking

for BSM Physics. Continous efforts have been undertaken to increase the sensitivity limits

on CLFV. Experimental limits have come a long way in last 50 years as it can be seen in
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Figure 1.5. So far no evidence of CLFV has been found, but physicists are still hopeful

enough to look for it.

Figure 1.5: Limit on the branching ratio of flavor violation set by experiment as a function
of the year [6]

The experiments that are currently under progress that aim to discover CLFV include:

• MEG is an experiment where the lepton flavor violating muon decay mode µ+ −→ e+γ

was examined in the years 2009-2013 which resulted in establishing the best limit for

the branching ratio so far at 4.2×10−13. A MEG-II detector upgrade is under progress

which aims to bring the sensitivity to 6× 10−14 [14] [15].

• DeeMee is an experiment at J-PARC MLF searching for Mu2e that aims at a single

event sensitivity of 10−14 [16].

• Mu3e is an experiment in search of lepton flavor violating muon decay mode µ+ −→

e+e−e+ that will be aiming to reach a sensitivity of 10−16 [17].

• T he COMET experiment is searching for coherent neutrino-less µ− −→ e− conversion

in muonic atom of aluminum, µ− + Al −→ e− + Al at a sensitivity of 10−16 [18].



8

• Mu2e at Fermilab, which will be looking for Coherent neutrino-less µ− −→ e−. We

will be discussing this further in the following section.

1.4 Mu2e at Fermilab [2][19]

Fermilab houses many high intensity experiments and Mu2e is one of its prestigious

undertakings. Fermilab’s muon campus hosts two very ambitious experiments both of which

are focused on the analysis of the same subatomic particle. Mu2e (Figure.1.7) is one, while

g − 2 [20] is the other. We will consider the requirements of the Mu2e experiment.

Mu2e at Fermilab aims to improve the current sensitivity limits of µ− −→ e− by four

orders of magnitude to 10−17. To achieve this sensitivity the experiment requires high in-

tensity and a low energy muon beam. The negative muons from the beam are stopped in a

target and captured by atoms. They undergo one of these three process:

• Decay in orbit (DIO) =⇒ µ− −→ e−νµν̄e (predicted by the SM)

• Weak capture =⇒ µ−p −→ νµn (predicted by the SM)

• Coherent flavor changing conversion =⇒ µ−N −→ e−N [21] (proof of CLFV)

The coherent conversion is a powerful channel to search for CLFV, as it leaves the nucleus

intact and there is only one detectable particle in the final state characterized by a signal

consisting of mono-energetic electron with energy Ece:

Ece = mµ − Eb −
E2
µ

2mN

(1.2)

where mµ is the muon mass at rest, Eb ≈ Z2α2mµ/2 is the muonic atom binding en-

ergy for a nucleus with atomic number Z, Eµ is the nuclear recoil energy, and mN is the



9

atomic mass. For this experiment we have a nucleus of aluminum which gives the value of

Ece = 104.963 MeV, which is a single peak of energy in an otherwise continous background

spectrum. Background signals include DIO from high momentun tail of muons, pions and

electron-positron pair conversion of photon (γ). Fermilab’s accelerator complex (Figure 1.6)

delivers the required high intensity muon beam to the target.

Figure 1.6: Fermilab Accelerator Campus [22]

The following section discusses how the necessary beam is transported for Mu2e.

1.4.1 Beam Transport

As the name of the experiment suggests, muons are the integral part of the experiment.

Muons are formed from pion decays produced by a proton beam hitting a tungsten target,

once the proton beam starts from the source it is accelerated through the Linac, Booster

and Main Injector arriving in the Delivery Ring in bunches of 4 × 1012 protons at 8 GeV.



10

The full details of the acceleration are out of scope for this thesis and can be found in [2].

From the delivery ring, protons are extracted at a controlled rate towards extinction and to

the target.

Figure 1.7: Muon Campus

1.4.2 Extinction [23]

Extinction is the process that comes directly after the extraction of the proton beam from

the Delivery Ring. The Mu2e experiment requires a beam consisting of proton bunches
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250 ns long, separated by 1.7 µs, with no out-of-time protons at the 10−10 fractional level

to avoid backgrounds. The extinction process will make sure only the in-time beam is

transmitted to the target. This is achieved by the AC dipole/collimator system. A bending

dipole deflects the out-of-time beam such that it will be absorbed by a collimator downstream

of the beam, thereby producing the required beam to the target.

1.4.3 Target and Detector system [24]

Once we get the proton beam with required intensity, the Target and Detector Sys-

tem generates and transports muons to the stopping target and detects the conversion to

electrons. It consists of complex magnetic field configuration consisting of gradient fields,

toroidal fields, and uniform fields generated with superconducting magnets. It is broadly

divided into three sections: Production Solenoid, Transport Solenoid, and Detector Solenoid

as shown in Figure 1.8.

Figure 1.8: Production, Transport and Detector Solenoid systems [25]



12

The first section includes the Production Solenoid where the 8 GeV proton beam coming

from right in Figure.1.8 will hit the tungsten target producing Kaons and charged Pions

which will decay into muons that are transported away from initial beam direction to next

section. This “backwards” mechanism is to avoid abundant unwanted particles like neutrons,

photons, electrons or positrons from photon conversion and to absorb the remaining protons

from the beam. This helps the detector capture events at a greater sensitivity. The Second

section has the Transport Solenoid which transports the incoming muons from the first

section towards the Detector Solenoid. It is designed with two bends and two collimators

to filter high energy, negatively charged particles, positively charged particles, and neutral

particles thereby reducing the background noise at the detector. The third and final section

is the Detector Solenoid that has the stopping target (aluminum), the spectrometer, and the

calorimeter for the detection of the conversion process of a muon into an electron.

Figure 1.9: Production Target [25]

Because of the complexity involved in all these sections there are limitations to the number

of protons that can be handled instantaneously at the Target and Detector system and this

is the motivation for optimizing the design of the controlled extraction at the

Delivery Ring. Slow Resonant Extraction is used to achieve this and is the main focus
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of this thesis. Before we discuss the extraction process, an understanding of the accelerator

physics inside the Delivery Ring is required.



CHAPTER 2

ACCELERATOR PHYSICS

This chapter will discuss the basics of accelerator physics, transverse dynamics, and

resonant extraction to understand how the high intensity proton beam will be delivered to

the target for Mu2e in a controlled manner. The first half of the chapter will start by briefly

discussing basic electromagnetism concepts, and then introduce a new coordinate system

to use in accelerator calculations. The second half will use these concepts to discuss the

essential beam dynamics necessary for understanding the main work in this thesis.

2.1 Introduction

Particle accelerators come in different shapes and sizes. Two typical geometry-based

accelerators are circular and linear accelerators, which each have their own advantages and

disadvantages [26]. Major factors that influence the design include:

• Particle to be transported (its type, mass, charge, etc..).

• Desired maximum energy to which particle is accelerated.

• Cost to build and operate the machine.

• Geographical location of the accelerator - largest accelerator built so far spans over an

area with a circumference of 27 km so these machines can be huge.
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Accelerators use electromagnetic force to accelerate, steer and transport a particle beam

from its source towards a target. Understanding how the particles interact with electromag-

netism is important to understand the fundamentals of how accelerators work.

2.2 Charged Particle in a Electromagnetic Field

The classical theory of electromagnetism deals with electromagnetic fields and their in-

teraction with charged particles. “Classical” implies the assumption that the charge distri-

butions (sources) are localized and smooth. The macroscopic Maxwell’s equations are stated

as follows [27]:

∇ · ~D = ρfree (2.1)

∇ · ~B = 0 (2.2)

∇× ~E +
∂ ~B

∂t
= 0 (2.3)

∇× ~H − ∂ ~D

∂t
= jfree (2.4)

Since the particles are traveling close to the speed of light, the Special Theory of Relativity

also needs consideration. The energy (E, different from electric field ~E) of the particle with

a momentum ~P and mass m is given as,

E =

√
~P 2c2 + (mc2)2 (2.5)



16

Accelerator physicists use the kinetic energy (E −mc2) to describe the particle as it is the

changing component in total energy. The force acting on a charged particle in an EM field

is given by

~F =
d~P

dt
= q

(
~E + ~v × ~B

)
(2.6)

where ~E and ~B are electric and magnetic fields respectively. The Hamiltonian of a charged

particle in an electromagnetic field is given by

H =

√
(mc2)2 + (~P − e ~A)2c2 + eΦ (2.7)

where ~A is the vector potential and Φ is the scalar potential. Now that we have the basic tools

from electromagnetism (EM), lets have a look at the coordinates that we use in accelerator

systems.

2.3 Coordinates in accelerator systems

Conventional coordinates for the accelerator systems will make analysis of particle dynam-

ics cumbersome. Redefining the coordinate system to better represent the particle trajectory

in an accelerator allows for more ease when solving the equations for particle dynamics. Let’s

look at a general circular accelerator to see how the new coordinates work.

As shown in Figure 2.1, the ideal trajectory of a particle along the accelerator is considered

as the origin of a locally inertial frame of reference moving along the path. Its transverse

axes, x and y are perpendicular to the path, while the longitudinal axis s is along the path

length which is given by [28],

Path length =
√
gµνdxµdxν (2.8)
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x

y

s

particle motion

ρ

Figure 2.1: Coordinates in Particle Accelerators

Let us assume ~ro(s) is the reference orbit of a particle and ρ as the local radius of curvature,

then the unit vectors for the coordinate system are as follows,

ŝ(s) =
d~ro(s)

ds
, x̂(s) = −ρdŝ(s)

ds
, ŷ(s) = x̂(s)× ŝ(s). (2.9)

The differentials are then defined as follows:

dŝ(s)

ds
= −1

ρ
x̂(s),

dx̂(s)

ds
=

1

ρ
ŝ(s) (2.10)

Assuming a reference orbit in planar geometry we have,

dŷ(s)

ds
= 0. (2.11)
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The position of the particle is then given by,

~r = ~ro(s) + xx̂(s) + yŷ(s) (2.12)

d~r

ds
= ŝ

(
1 +

x

ρ

)
,

d~r

dx
= x̂,

d~r

dy
= ŷ. (2.13)

Now that we know how to represent the particle in an accelerator system, we can rewrite

the EM equations in the new coordinate system.

2.3.1 Revisiting charged particle in an Electromagnetic Field

Using these new coordinates the Hamiltonian (Eq 2.7) becomes

H = c

√
(mc)2 + (Px − eAx)2 + (Py − eAy)2 +

1

(1 + x/ρ)2
(Ps − eAs)2 + eΦ (2.14)

Rearranging the above equation in terms of the new canonical variables, [x, Px], [y, Py], and

[t, −H] gives the new Hamiltonian, H = −Ps:

H = −

√[(
H − eΦ

c

)2

− (mc)2 − (Px − eAx)2 − (Py − eAy)2
](

1 +
x

ρ

)2

− eAs (2.15)

A detailed derivation of equations 2.14 and 2.15 are given in Appendix A. A few assumptions

that are applied for our case to help simplify the equations are as follows

• 2D magnetic field, ~B = Bxx̂ + Byŷ, which leads to a vector potential with just z

component and Ax = Ay = 0

• Current study only includes magnetic elements, so there is no electric field which means

(H − eΦ) can be written just as H



19

• Constant Energy (no acceleration) which means

(
H

c

)2

− (mc)2 = ~P 2 (2.16)

With these assumptions, the Hamiltonian becomes

H = −

√(
~P 2 − P 2

x − P 2
y

)(
1 +

x

ρ

)2

− eAs (2.17)

Let P0 be the momentum of the particle on reference orbit and ~P = P0(1 + δ)

H̃ =
H

P0

= −

√( ~P 2

P 2
0

− P 2
x

P 2
0

−
P 2
y

P 2
0

)(
1 +

x

ρ

)2

− eAs
P0

(2.18)

Let Px

P0
= P̃x and Py

P0
= P̃y then we have

H̃ = −
(

1 +
x

ρ

)√(
(1 + δ)2 − P̃x

2 − P̃y
2
)
− eAs

P0

(2.19)

H̃ = −
(

1 +
x

ρ

)
(1 + δ)

√(
1− P̃x

2

(1 + δ)2
− P̃y

2

(1 + δ)2

)
− eAs

P0

(2.20)

The following assumptions will further simplify the Hamiltonian

• Paraxial approximation P̃x, P̃y << 1

• Low momentum spread δ << 1

Such that the Hamiltonian for a reference particle becomes:

H̃ = −
(

1 +
x

ρ
− x′2

2
− y′2

2

)
− e

P0

~A · ŝ
(

1 +
x

ρ

)
(2.21)
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where,

x′ =
∂H̃

∂Px
=

P̃x
1 + δ

y′ =
∂H̃

∂Py
=

P̃y
1 + δ

(2.22)

These new coordinates and canonical variables will be used from now on, which means we

will be integrating over the path s instead of time. A detailed analysis of how to arrive upon

equation 2.21 can be found in Appendix A. The following section discusses the elements that

will generate these fields inside the accelerator.

2.4 Magnets

Figure 2.2: Dipole Magnet [29]. Figure 2.3: Quadrupole Magnets [30].

Magnets constitute major part of the accelerator that help us steer particles. In this

section we will discuss in more detail about few common magnets that are in use.

A Dipole magnet (Figure 2.2) is used to steer particles only in one direction either ver-

tically or horizontally. A Quadrupole will focus the particles in one direction and defocus
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in the other depending upon the poles placement as shown in Figure 2.3. A Sextupole is a

magnet with non-linear field gradient i.e it will have higher focusing effect for the particles

that are farther from center of the beam. These magnets are placed one behind another with

a periodic arrangement of cells each of which contains focusing, defocusing, bending and drift

elements. A simple such cell is called a FODO lattice. A particle accelerator contains many

such lattice elements over its length.

Magnetic steering of particles is described mathematically as follows. From the assump-

tions in section 2.3.1 the magnetic field of any element in an accelerator is represented as

~B = Bxx̂+Byŷ which results in

∇× ~B =

∣∣∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

∂
∂x

∂
∂y

0

Bx By 0

∣∣∣∣∣∣∣∣∣∣
= ẑ

(
∂By

∂x
− ∂Bx

∂y

)
= 0 (2.23)

=⇒ ∂By

∂x
=
∂Bx

∂y
≡ B′ (2.24)

The taylor series expansion for magnetic field about x = y = 0 for small x, y gives:

~B ≈
(
Bx(0, 0) +

∂Bx

∂y
y +

∂Bx

∂x
x

)
x̂+

(
By(0, 0) +

∂By

∂x
x+

∂By

∂y
y

)
ŷ (2.25)

The Lorentz force in Eq 2.6 can be rewritten as follows

d~P

dt
= q~v × ~B (2.26)
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2.4.1 Dipole

For a dipole magnet with a non-zero magnetic field in y direction (By 6= 0, B′ = 0), the

Lorentz force equation for a particle in position ~R = rx̂+yŷ, where r ≡ ρ+x, gets simplified

to

γm~̈R = q(~v ×Byŷ) (2.27)

~̈R =
qvBy

γm
=
qv2By

γmv
=
qv2By

~P
=
v2

ρ
(2.28)

which gives us the following relation for the bend radius ρ

1

ρ
=

By

(Bρ)
(2.29)

where (Bρ) is called magnetic rigidity [26] and is given as;

(Bρ) ≡
~P

q
=

momentum

charge
. (2.30)

2.4.2 Quadrupole

For a focusing quadrupole B′ 6= 0. Solving the Lorentz force equation for the quadrupole

gives

γm~̈R = q(~v × ~B) (2.31)

~v × ~B =

∣∣∣∣∣∣∣∣∣∣
x̂ ŷ ŝ

vx vy vs

B′x B′y 0

∣∣∣∣∣∣∣∣∣∣
= −vsB′yx̂+ vsB

′xŷ + (vxB
′x− vyB′y)ŝ (2.32)
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Under the paraxial approximation we can ignore the third term in the above equation and

treating s as an independent variable, we have

d

dt
=
ds

dt

d

ds
(2.33)

The above relations lead to two set of equations, defined as;

γmv
d2x

ds2
= −qB′x

γmv
d2y

ds2
= qB′y

(2.34)

The definition in Eq 2.30 gives the equations of motion are as follows

d2x

ds2
+

B′

(Bρ)
x = 0 (2.35)

d2y

ds2
− B′

(Bρ)
y = 0 (2.36)

Both these equations have the form of a simple harmonic oscillator shown here:

x′′ +Kx = 0 (Hills equation [26]) (2.37)

For circular accelerators, K is periodic which gives the general solution for the above equation:

x = Aw(s) cos[ψ(s) + δ] (2.38)

where A, δ are two constants of integration.
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Figure 2.4: Sextupole[31]

2.4.3 Sextupole

A sextupole magnet has a gradient field which varies non-linearly with respect to position

and is shown in Figure 2.4. Sextupoles are mainly used to correct the momentum spread

of the beam (also known as chromaticity). The 2-D field components within a sextupole

magnet are

Bx = B′′xy (2.39)

By =
B′′(x2 − y2)

2
(2.40)

where B′′ is a constant, and so following the same procedure as for quadrupoles, we have:

~v × ~B =

∣∣∣∣∣∣∣∣∣∣
x̂ ŷ ŝ

vx vy vs

B′′xy B′′(x2−y2)
2

0

∣∣∣∣∣∣∣∣∣∣
= −vs

B′′

2
(x2 − y2)x̂+ vsB

′′xyŷ (2.41)



25

And the equations of motion (ignoring the coupled motion) are as follows

d2x

ds2
+

B′′

(2Bρ)
x2 = 0 (2.42)

d2y

ds2
− B′′

(2Bρ)
y2 = 0 (2.43)

Many accelerators contain a combination of all three magnets discussed so far to control

the transverse motion. There are new accelerators being built with additional non-linear

elements like octupole, decapoles; However that discussion is out of the scope of this thesis.

2.5 Courant-Snyder Parameters [32]

In region of constant K, The equation of motion (Eq 2.37) can also be expressed in the

matrix form [26] as follows,

x
x′


out

=

 cos(
√
Kl) 1√

K
sin(
√
Kl)

−
√
K sin(

√
Kl) cos(

√
Kl)


x
x′


s0

(2.44)

If K < 0, then

x
x′


out

=

 cosh(
√
|K|l) 1√

|K|
sinh(

√
|K|l)

−
√
|K| sinh(

√
|K|l) cosh(

√
|K|l)


x
x′


s0

(2.45)

Using the general solution from Eq 2.38 we can write the equation of motion as follows,

x
x′


s0+C

=

cos ∆ψC + α sin ∆ψC β sin ∆ψC

−γ sin ∆ψC cos ∆ψC − α sin ∆ψC


x
x′


s0

(2.46)
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where C is distance along a periodic section and,

β(s) ≡ w2(s)

k
, ψ′ =

k

w(s)2
(2.47)

α(s) ≡ −1

2

dβ(s)

ds
(2.48)

γ ≡ 1 + α2

β
(2.49)

These quantities α, β and γ are called the Courant-Snyder parameters. A detailed derivation

of the above matrix solution is given in Appendix B. The Phase advance of the particle for

one turn is given by:

∆ψC =

∫ s0+C

s0

ds

β(s)
(2.50)

The beta function will determine how the particles evolve around the accelerator based on

their initial position. The number of particle oscillations about the reference orbit per turn

is called tune of the accelerator and is an important parameter characterizing accelerator

lattice. Tune can be calculated as:

ν =
1

2π

∮
ds

β(s)
(2.51)

2.5.1 Ellipses

All the discussion so far has described a single particle’s trajectory. However an accelera-

tor is never built to transport a single particle, and usually has a particle count to the order

of 1012 or higher. So, the formalism of the dynamics will be extended for an ensemble of
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Figure 2.5: Particle distribution.
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Figure 2.6: Phase space mapping.

particles. The solution for the equations of motion in terms of Courant-Synder parameters

is [33],

x = A
√
β(s) cos[ψ(s) + δ] (2.52)

Rearranging the equation and expressing A in terms of x and x′ gives

A2 = γx2 + 2αxx′ + βx′2 (2.53)

which is similar to the general equation of an ellipse. It follows that the phase space area of

particles traveling around the circular accelerator looks as shown in Figures 2.5 and 2.6. The

phase space area occupied by the beam is called emittance (ε) which has units of mm-mrad

or sometimes π mm-mrad. Includng emittance, Eq 2.53 can be rewritten as follows

ε

π
= γx2 + 2αxx′ + βx′2 (2.54)



28

Emittance depends on the energy of the beam, normalized emittance is used to describe the

phase space area independent of the beam energy as follows,

εn = ε× (γβ) (2.55)

where γ and β are relativistic parameters. For an ensemble of particles, the Courant-Snyder

parameters can also be given in terms of a statistical quantity like the standard deviation

[34] (σ):

β =
πσ2

x

ε
; γ =

πσ2
x′

ε
; α = −πσxσx

′

ε
. (2.56)

2.5.2 Normalized Phase Space

The elliptical phase space can be transformed into normalized circular phase space (see

Figures 2.7 and 2.8) by the transformation of coordinates as follows

x = a

(
β(s)

β0

)1/2

cosχ(s) (2.57)

px ≡ β(s)x′ + α(s)x = −a
(
β(s)

β0

)1/2

sinχ(s) (2.58)

where a is the real amplitude at the location of interest where β = β0.
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Figure 2.7: Normalized Particle dis-
tribution.
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Figure 2.8: Normalized Phase Space.

2.6 Resonance

Whenever there is periodic motion there can be resonance conditions which might make

the system unstable. This section will look at resonance condition in an accelerator and the

effect it has on the particle beam. For clarification, the resonance being discussed here is in

the transverse direction.

2.6.1 Dipole Resonance

Consider an accelerator with a dipole error at a single location due to either manufactur-

ing defect or a construction error. If the tune of the machine is integer (say i) then a particle

in phase space would ideally arrive at the same position after i turns. For example, if i=1,

the particle should arrive at the same spot at each turn. However dipole error will cause the

particle to slowly get a kick outwards each turn. With a finite aperture, the particle will
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Figure 2.9: Dipole Reso-
nance.
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Figure 2.10: Quadrupole Resonance.

be lost. The particle’s trajectory is represented in Figure 2.9 for a dipole error at a random

location.

2.6.2 Quadrupole and Sextupole Resonances

Using similar qualitative argument, if we have a single quadrupole error and the machine

is running at a half integer tune the particle would receive a kick every second turn as shown

in Figure 2.10. For a sextupole field error, if the tune is close to one-third of an integer then

the particle will receive a kick every third turn as shown in Figure 2.11. In this thesis we will

focus on sextupole resonance which will be discussed more rigorously in following sections.

In all cases of resonance, the particle amplitude is increasing, so if we have an ensemble of

particles the beam size increases at each turn. In the following section, we use the increasing

beam size to our advantage.
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Figure 2.11: Sextupole Resonance.

2.7 Resonant Extraction [26]

Resonance extraction is a clever method of controlling and changing the phase space

of particles by introducing a small perturbation in the field. Assume a small perturbation

introduced in the field ∆B(x, s), particle is deflected by an angle and its slope changes as

follows,

∆x′ = −∆B∆s

Bρ
(2.59)

As a result,

∆px = −β(s)
∆B∆s

Bρ
(2.60)
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The particle’s amplitude and phase change due to the perturbation for infinitesimal ∆s, can

be followed from the equations

∆x =

(
β

β0

)1/2

(∆a cosχ− a sinχ.∆χ) = 0 (2.61)

∆px = −
(
β

β0

)1/2

(∆a sinχ+ a cosχ.∆χ) = −β(s)
∆B∆s

Bρ
(2.62)

which results in,

∆a =
β0

(Bρ)

(
β

β0

)1/2

∆B∆s sinχ (2.63)

∆χ =
β0

(Bρ)

(
β

β0

)1/2
∆B∆s

a
cosχ (2.64)

These perturbations add up for each turn and the phase advances as per

χ(s) = ψ + νφ(s) (2.65)

where,

φ(s) ≡
∫

ds

νβ(s)
(2.66)

As we add up all the effects of individual perturbations experienced by the particle along its

path we have,

da

dn
=

β0
(Bρ)

∮ (
β

β0

)1/2

∆B sin(ψ + νφ)ds. (2.67)

Change in the phase after passing through one turn is,

∆ψ = 2πν +
β0

(Bρ)

∮ (
β

β0

)1/2
∆B

a
cos(ψ + νφ)ds. (2.68)
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Assuming a difference between phase advance and 2πν to be small, we have

d

dn

(
ψ − 2πν

)
=

β0
(Bρ)

∮ (
β

β0

)1/2
∆B

a
cos(ψ + νφ)ds. (2.69)

2.7.1 Non-linear Resonance using Sextupoles

Now that we have seen the effects of perturbations on the phase space of the particles

let’s see what happens if the perturbation comes from a sextupole magnet. For a sextupole

magnet,

∆B(x, s) =
B′′(s)

2
x2. (2.70)

Substituting the above value into equations 2.67 and 2.68 gives

da

dn
= a2

β0(
Bρ
) ∮ ( β

β0

)3/2
B′′

2
cos2 χ sinχ(s) ds (2.71)

Using a few trigonometric identities we have

da

dn
=
a2

4

β0(
Bρ
) ∮ ( β

β0

)3/2
B′′

2
(sinχ+ sin 3χ) ds (2.72)

da

dn
=
a2

4

β0(
Bρ
) ∮ ( β

β0

)3/2
B′′

2

[
sinψ cos νφ + cosψ sin νφ

+ sin 3ψ cos 3νφ + cos 3ψ sin 3νφ
]
ds

(2.73)
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If the tune (ν) is close to third integer (ν0 = m/3, m = integer), the sin 3χ contribution

for sextupoles dominates sinχ, so we have,

da

dn
=
a2

4

β0(
Bρ
) ∮ ( β

β0

)3/2
B′′

2

[
sin 3ψ cos 3ν0φ + cos 3ψ sin 3ν0φ

]
ds (2.74)

Similarly,

dψ

dn
=
a

4

β0(
Bρ
) ∮ ( β

β0

)3/2
B′′

2

[
cos 3ψ cos 3ν0φ − sin 3ψ sin 3ν0φ

]
ds (2.75)

Replacing ψ with ψ̃ ≡ ψ − 2πν0n these equations can be written as

da

dn
=
a2

4

(
A sin 3ψ̃ + B cos 3ψ̃

)
(2.76)

dψ̃

dn
=
a

4

(
A cos 3ψ̃ − B sin 3ψ̃

)
+ 2πδ (2.77)

where δ = ν − ν0 and,

A ≡ β0(
Bρ
) ∮ ( β

β0

)3/2
B′′

2
cos 3ν0φ ds (2.78)

B ≡ β0(
Bρ
) ∮ ( β

β0

)3/2
B′′

2
sin 3ν0φ ds (2.79)

2.7.2 Equations of motion for sextupole resonance

By rotating back to our canonical variables x, px we have the following equations of

motion

dx̃

dn
=
x̃

a

(
da

dn

)
+ p̃x

(
dψ̃

dn

)
, (2.80)

dp̃x
dn

=
p̃x
a

(
da

dn

)
− x̃
(
dψ̃

dn

)
, (2.81)
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After careful algebra we get,

dx̃

dn
=

1

4
A(−2x̃p̃x) +

1

4
B(x̃2 − p̃x2) + 2πδ p̃x, (2.82)

dp̃x
dn

=
1

4
A(x̃2 − p̃x2) +

1

4
B(−2x̃p̃x)− 2πδ x̃, (2.83)

consider a case where B = 0, then by solving the above set of equations we have,

(
x̃− 4πδ

A

)[
P̃x

2 − 1

3

(
x̃+

8πδ

A

)2]
= k(constant) (2.84)

Fixed points in the separatrix (separatrix constitutes the boundaries for stable phase space

region) are derived by solving the above equation for cases dx̃/dn = 0 and dP̃x/dn = 0 which

are (
x̃ = −8πδ

A
, P̃x = 0

)
, (2.85)

and (
x̃ = −4πδ

A
, P̃x = ±

√
3

4πδ

A

)
, (2.86)

The separatrix is shown in the Figure 2.12. If there is more than one sextupole (i.e, for

arbitrary values of A and B), the orientation of the separatrix can be controlled as seen in

Figure 2.13. The red line in the Figure 2.13 is the resultant orientation of the separatrix

when two sextupoles are separated by a phase difference of 3∆ψ0 = 90◦. Any particles

outside of the separatrix will escape away from the bounded phase space over a number of

turns.

The next chapter will use the analytical information discussed here in Chapter 2 to

describe the experimental setup and simulate resonance extraction for Mu2e.
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x̃

p̃x (4πδ
A
,
√

34πδ
A

)

(−8πδ
A
, 0)

(4πδ
A
,−
√

34πδ
A

)

Figure 2.12: Separatrix for sextupole resonance

S1

S2

A

B

Figure 2.13: Two sextupoles



CHAPTER 3

SIMULATION

Previous chapters discussed briefly about the motivations behind Mu2e, and the details

about the experimental setup at Fermilab. We also learned about the mathematical tools

that help us understand accelerator physics necessary for Mu2e, now let’s look at the actual

simulation to see whether we can extract beam towards the target at required rate to look

for muon to electron conversion.

3.1 Simulation

In chapter 2, the Courant-Snyder (CS) parameters, and the equations of motion for

a particle in circular accelerator were introduced. All these equations are helpful tracing

the particle’s trajectory in the accelerator. To ease the burden of tracking the motion of

thousands of particles simultaneously, we make use of two simulation softwares: R and MAD-

X. The analysis of particle motion starts from the moment particle enters the Delivery Ring

(DR) until it reaches the extraction point, focusing mainly on the transverse dynamics. The

assumption remains that the particles don’t experience any acceleration during this time.

Even though the DR is not circular in shape, it is periodical and we can therefore use our

equations of motion to track the particles each turn.
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3.1.1 R and MAD-X

R[35] is a powerful statistical programming language useful for analysis on large dataframes.

In the case of Mu2e, we can perform matrix operations on thousands of particles simultane-

ously using R. CS parameters and phase advance allows for use of the matrix representation

to track particle through any element.

Methodical Accelerator Design (MAD[36]) is a software by CERN aimed at performing

computations for particle accelerators. It is a powerful tool that can track a particle through

any common element used in accelerators. MAD allows for definition of parameters for each

element independently. For example a quadrupole magnet can be defined with its length,

gradient, and tilt as parameters which allows for more flexibility. One can automate the

process to get a range of parameters for a certain element to arrive at the desired output

values. MAD can calculate the Twiss parameters, which include canonical variables at each

element apart from tune, dispersion and other CS parameters. Current version of MAD is

MAD-X.

3.2 Setup and Parameters

The Delivery Ring (DR) at Fermilab is 505 km long and contains about one thousand

elements to be included in the MAD-X simulation. There is a mirror symmetry with a period

of three in the lattice. The three way symmetry can be seen from the betatron oscillation

plot as show in Figure 3.1.
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Figure 3.1: Delivery Ring (DR) Lattice[37] and amplitude function of βx and βy for each
side of the DR
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The plot in Figure 3.1 includes dispersion values, which will be ignored in future simu-

lations for the sake of simplicity. A few parameters used to setup the simulation in MAD-X

are shown in Table 3.1. Some of these are constants from the designed parameters of the

Mu2e experiment, while the others are an approximation assumed for the ease of simulation.

Table 3.1: Parameters that are considered for this simulation [2].

Type value

Emittance(normalized) 16π mm-mrad

Beam Total Energy 8.89 GeV

νx 9.65

νy 9.694

3.3 Third Integer Resonance

We discussed about the equations of motion for the third integer resonance in Chapter

2, and the fixed points of separatrix are given by equations 2.85 and 2.86, from which we

can say that

Size of separatrix ∝ δ

A
(3.1)

where δ is tune difference from the third integer tune and A depends on the sextupole

strengths. To extract particles at a controlled pace, the size of the separatrix needs to be

adiabatically reduced, which can be achieved by increasing the sextupole strengths or reduc-

ing the tune difference. The above relation clearly shows that to reduce the size of separatrix

to zero, either A (sextupole strengths) has to be increased to ∞ (which is impossible), or

δ (tune difference) has to go to zero. Although changing tune gives you better control over

extraction, it alters the beta function, thereby changing the orientation of the separatrix
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which alters the slope at which the particles are extracted. We can use a combination of

changing the strength and tune to achieve reasonably good extraction.

Figure 3.2: Sextupoles Placement

Placement of sextupoles and quadrupoles (which are used to change the tune) in the

DR are shown in Figure 3.2. The phase evolution in both R and MAD-X can be seen in

Figure 3.3. R simulation (Appendix C) which gives the approximate particle tracking is

shown on the left, while MAD-X that can simulate to the high orders is shown on the right.

We choose to run until 5th order because of computational limitations. Parameters for the

extraction are given in the Table 3.2
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Table 3.2: Parameters that are considered for extraction [2]

Type value

Septum placement (from center of beam) 12mm
Septum thickness 50µm

Spill Duration 54msec(32000 turns)
Target extraction Rate 0.003%
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Figure 3.3: Phase evolution in R (on the Left) and MAD-X (on the Right)

3.4 Noise extraction

In order to accurately extract particles, noise can be included as a parameter to extract

particles. By using a noise source to increase the beam emittance while keeping the separatrix
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configuration constant, a better control of extraction rate is expected. Earlier we discussed

about how to use both sextupoles and tuning quadrupoles to achieve extraction. Noise is

induced through an RF kicker to slowly increase the emittance, thereby pushing particles

out of the separatrix. In the experiment a kicker magnet driven by low-amplitude white

noise source will be utilized to generate random kicks. This will affect the emittance.

px = βx′ + αx

x

a

∆p = β∆x′a′

Figure 3.4: Noise introduction in Phase space

The area of the normalized phase space for an ensemble of particles is

ε̂ = βε = π〈x2〉 (3.2)

ε̂ = π
〈a2〉

2
(3.3)

The change of amplitude due to the noise of ∆x′ in each turn

〈a2〉 = 〈a20〉+ 〈∆p2x〉 − 2〈a0∆pxcos(ang)〉 (3.4)

∆〈a2〉 = 〈∆p2x〉 (3.5)
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The change of the phase space area per turn

∆ε̂ = π
〈∆p2x〉

2
= π

β2
k

2
(∆x′rms)

2 (3.6)

where βk is β value at the location of kicker device.

x̃

p̃x (4πδ
A
,
√

34πδ
A

)

(−8πδ
A
, 0)

(4πδ
A
,−
√

34πδ
A

)

ε̂

ε̂+ ∆ε̂

∆p̃x

Figure 3.5: Emittance change due to noise

One can clearly see that the noise pushes particles closer to the boundaries of the sep-

aratrix. Our aim is to increase the emittance such that we extract particles at a constant

rate. Results on how various parameters effect the rate of extraction are shown in the next

chapter.



CHAPTER 4

RESULTS AND CONCLUSION

4.1 Results

Ultimately our goal is to simulate the particle tracking and beam extraction to see if we

could extract the protons out of Delivery Ring (DR) at a constant rate towards the target.

The following scenarios were investigated.

• Simulating the third integer resonance extraction varying Sextupoles, Quadrupoles for

tune separately and combined on Delivery Ring lattice, this was repeated for fifty

iterations and lot more test runs to get the parameters close to the actual experiment.

• Simulating the effects of noise on extraction. A simple R function is used to simulate

random noise generated by a RF kicker. This was repeated multiple iterations until

the extraction rate was close to the required value.

• Simulating the particle loss and the power loss due to particles hitting the septum foils

during extraction.

Computations are performed using the Gaea [38] cluster at Northern Illinois University.

R script was used to generate random noise and conditional logic is used to analyze the

particle loss at the extraction point. Both R and MAD-X are used for tracking while bash

script is used to vary the parameters at each turn. Tests were started with a sample size

of 100 particles and 100 turns to serve as prototype for the analysis, slowly the sample size

increased to 105 particles and particle tracking time was increased to 54 msec (32000 turns).
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Run time for the simulation ranged from 30 s to 60 hrs depending on the sample size and

tracking time. For calculating power loss while extraction we assume all the particles having

same kinetic energy (8 GeV). Following analysis shows what would be the power loss for the

design values of the experiment during extraction.

Energy of each particle = 1.424× 10−9 J (4.1)

Total number of particles in the Delivery Ring = 1× 1012 (4.2)

According to Technical Design Report[2] the loss is expected to be less than 2 %. For 2 %

loss,

Total particle loss = 2× 1010 (4.3)

Total energy loss = 28.48 J (4.4)

Total power loss = 527 W (4.5)

4.1.1 Interpreting Results

Figures 4.1 through 4.6 show the simulation results for 5000 turns by varying different

parameters. In all these figures, the green line represents tune of DR and yellow line repre-

sents strength of the sextupoles, both were varied from their initial value (0 in scale) to the

final value (1 in scale). Turn numbers over which tune and sextupole strengths are changing

were mentioned on the title of the figures. Target extraction rate (0.003 percent per turn)

is represented by the pink line and the white line represents the trend line of the extraction

rate when the noise is induced.
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While all the values shown in the plots are calculated based on simulation sample size

(105 particles), the power loss is calculated for original beam size used for the experiment

(1012 particles) by assuming that the following relation is true.

Power loss in Plot = Power loss for 105 particles× 1012

105
(4.6)

The plots are divided into two sections, with the one on left representing the extraction

without noise when the tune and sextupole strengths are changing while the one on right

represents the extraction process once the tune and sextupole strengths reached their final

values and noise is introduced at each turn. For example, if a random noise of ∆x′ = 10−6

is introduced starting from turn 1000 it means for each particle in the ensemble a random

kick between ∆x′ = ±10−6 is given at every turn after 1000.

Figure 4.1: Tune 0-250; Sextupole 0-500; Noise(∆x′) = 10−6
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Figure 4.2: Tune 0-250; Sextupole 0-500; Noise(∆x′) = 5× 10−6

Figure 4.3: Tune 0-250; Sextupole 0-500; Noise(∆x′) = 8× 10−6
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Figure 4.4: Tune 0-250; Sextupole 0-500; Noise(∆x′) = 2× 10−6

Figure 4.5: Tune 0-1000; Sextupole 0-1000; Noise(∆x′) = 2× 10−6
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Figure 4.6: Tune 0-2000; Sextupole 0-2000; Noise(∆x′) = 2× 10−6

As one can see from the figures, there is a transient peak of extracted particles just as

the tune and sextupole strengths reach their final values which gives a much higher rate of

extraction than required for a time period of about 500 turns. The desired extraction rate

with minimum loss of particles is observed when the parameters are changed gradually and

the closest extraction rate to the desired value without much losses is observed when tune

and sextupoles are varied gradually over 2000 turns and the noise is ∆x′ = 2×10−6 as shown

in Figure 4.6. While the extraction rate in the plots are per turn, the loss is cumulative for

the number of turns in the plot associated with it. The power loss in the figures specify the

value extrapolated for 1012 particles assuming the worst case scenario where all those hitting

the septum foil [2] at the extraction location lose their entire energy.
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4.2 Future directions

Expanding the understanding of noise induced resonance extraction for variable energy

levels of the beam and including the longitudinal parameters like momentum spread and

dispersion will be important when we turn our attention to future plans for the accelerator

complex at Fermilab in which the idea of varying the beam energy in the Delivery Ring will

be examined. For example, if the beam energy is 2 GeV instead of 8 GeV, then the beam

size is bigger so the separatrix size has to be reconfigured to fit the new beam.

It is also appropriate to examine the ways to improve the target and detector system to

handle higher intensities and better sensitivities.

4.3 Conclusions

The purpose of this study is to understand the motivations behind the search for Mu2e

and the workings of how to deliver the beam with required intensity to make the experiment

a reality. Utilizing the parameters from Mu2e, understanding the beam dynamics, phase

space evolution, and extraction have been the central part of this study.

Delivering the beam at right intensity is important to achieve high sensitivities in the

search for CLFV and BSM through the Mu2e experiment. Simulations clearly show that

particle’s energy, beam emittance, tune of the machine, placement of the sextupoles and

tuning quadrupoles, nature and magnitude of the noise induced, extraction location and

phase space parameters at the extraction location influence the rate of extraction. Important

observation noted during simulation is that while using the resonance condition in magnets

help extract the particles within the desired range of phase space values, the rate of extraction
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and thereby the outcoming intensity of the beam can be fine-tuned by using RF noise in

addition to the magnets.
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APPENDIX A

HAMILTONIAN IN ACCELERATOR COORDINATES
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This appendix gives a detailed derivation for the equations that are discussed in Chapter 2.

Starting from the Hamiltonian in Eq. 2.7

H =

√
(mc2)2 + (~P − e ~A)2c2 + eΦ (A.1)

where ~P is canonical momentum, ~A is the vector potential and Φ is the scalar potential.

The components of canonical momentum in the new accelerator system coordinate system

are as follows:

Px = ~P · x̂ Py = ~P · ŷ Ps = ~P · ŝ
(

1 +
x

ρ

)
. (A.2)

Components of vector potential in new coordinate system are:

Ax = ~A · x̂ Ay = ~A · ŷ As = ~A · ŝ
(

1 +
x

ρ

)
. (A.3)

Hamiltonian is

H = c

√
(mc)2 + (Px − eAx)2 + (Py − eAy)2 +

1

(1 + x/ρ)2
(Ps − eAs)2 + eΦ (A.4)

Hamiltonian equations of motion are,

∂H

∂Px
= ẋ

∂H

∂x
= −Ṗx, (A.5)

∂H

∂Py
= ẏ

∂H

∂y
= −Ṗy, (A.6)

∂H

∂Ps
= ṡ

∂H

∂s
= −Ṗs. (A.7)
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In these coordinates we differentiate with respect to path length instead of time, so we have

[26]:

x′ =
dx

ds
=
dx

dt

dt

ds
=
∂H

∂Px

(
∂H

∂Ps

)−1
(A.8)

Assuming At constant H, using chain rule we have

dH =

(
∂H

∂Px

)
Ps

dPx +

(
∂H

∂Ps

)
Px

dPs = 0

∂Ps
∂Px

= − ∂H
∂Px

(
∂H

∂Ps

)−1 (A.9)

By substituting the above value we have,

x′ =
∂(−Ps)
∂Px

P ′x =
dPx
ds

=
∂Px
dt

dt

ds
= −∂(−Ps)

∂x

(A.10)

Similarly,

y′ =
∂(−Ps)
∂Py

P ′y = −∂(−Ps)
∂y

t′ =
∂Ps
∂H

H ′ = −∂Ps
∂t

(A.11)

Equations A.10 and A.11 look like Hamiltonian equations of motion if the Hamiltonian is

−Ps with the canonical variables being x, Px; y, Py, and t, -H so rewriting the Hamiltonian

we have,

H − eΦ
c

=

√
(mc)2 + (Px − eAx)2 + (Py − eAy)2 +

1

(1 + x/ρ)2
(Ps − eAs)2 (A.12)

with a little re-arrangement we have,

(
Ps − eAs
1 + x/ρ

)2

=

(
H − eΦ

c

)2

− (mc)2 − (Px − eAx)2 − (Py − eAy)2 (A.13)
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Ps =

√[(
H − eΦ

c

)2

− (mc)2 − (Px − eAx)2 − (Py − eAy)2
](

1 +
x

ρ

)2

+ eAs (A.14)

By taking the new canonical variables into consideration, we have the new Hamiltonian as

H = −Ps

H = −

√[(
H − eΦ

c

)2

− (mc)2 − (Px − eAx)2 − (Py − eAy)2
](

1 +
x

ρ

)2

− eAs (A.15)

A.1 Assumptions

A few assumptions we can make for our case(just to make our life easier) are as follows

• 2D magnetic field, ~B = Bxx̂+Byŷ, which means we can assume vector potential with

just z component and Ax = Ay = 0

• No Electric Field (H − eΦ) can be written just as H

• Constant Energy which means

(
H

c

)2

− (mc)2 = ~P 2 (A.16)

Hamiltonian is

H = −

√(
~P 2 − P 2

x − P 2
y

)(
1 +

x

ρ

)2

− eAs (A.17)

Let P0 be the momentum of the particle on reference orbit and ~P = P0(1 + δ)

H̃ =
H

P0

= −

√( ~P 2

P 2
0

− P 2
x

P 2
0

−
P 2
y

P 2
0

)(
1 +

x

ρ

)2

− eAs
P0

(A.18)
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Let Px

P0
= P̃x and Py

P0
= P̃y then we have

H̃ = −
(

1 +
x

ρ

)√(
(1 + δ)2 − P̃x

2 − P̃y
2
)
− eAs

P0

(A.19)

H̃ = −
(

1 +
x

ρ

)
(1 + δ)

√(
1− P̃x

2

(1 + δ)2
− P̃y

2

(1 + δ)2

)
− eAs

P0

(A.20)

A couple more assumptions that suit our case

• Paraxial approximation P̃x, P̃y << 1

• Low momentum spread δ << 1

Using the above assumptions we can expand the equation (24) with taylor series, we have

H̃ = −
(

1 +
x

ρ

)
(1 + δ)

(
1− P̃x

2

2(1 + δ)2
− P̃y

2

2(1 + δ)2

)
− eAs

P0

(A.21)

H̃ = −
(

1 +
x

ρ

)(
1 + δ − P̃x

2

2(1 + δ)
− P̃y

2

2(1 + δ)

)
− eAs

P0

(A.22)

x′ =
∂H

∂Px
=

P̃x
1 + δ

y′ =
∂H

∂Py
=

P̃y
1 + δ

(A.23)

Using the above equations we can rewrite the Hamiltonian as follows

H̃ = −
(

1 +
x

ρ

)(
1 + δ − x′2

2
− y′2

2

)
− e

P0

~A · ŝ
(

1 +
x

ρ

)
(A.24)
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Using the general solution from Eq. 2.38 we can rewrite the hills equation as follows

x′′ +Kx = A(2w′ψ′ + wψ′′)sin(ψ + δ) + A(w′′ − wψ′2 +Kw)cos(ψ + δ) = 0 (B.1)

multiplying the sine term by w we have

2ww′ψ′ + w2ψ′′ =
(
w2ψ′

)′
= 0 =⇒ ψ′ =

k

w(s)2
(B.2)

where k is constant of integration. The general solution can also be rewritten [26] as,

x = w(s)
(
A1 cosψ + A2 sinψ

)
(B.3)

and

x′ =

(
A1w

′ +
A2k

w

)
cosψ +

(
A2w

′ − A1k

w

)
sinψ (B.4)

using the initial conditions of x0, x
′
0 constant values are,

A1 =
x0
w
, A2 =

x′0w − x0w′

k
(B.5)

Assuming w as a periodic function, the resulting matrix equation is

x
x′


s0+C

=

cos ∆ψC − ww′

k
sin ∆ψC

w2

k
sin ∆ψC

−1+(ww′/k)2

w2/k
sin ∆ψC cos ∆ψC + ww′

k
sin ∆ψC


x
x′


s0

(B.6)
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which we can rewrite by defining the Courant-Synder parameters we discussed in Equations

2.47, 2.48, 2.49 as follows,

x
x′


s0+C

=

cos ∆ψC + α sin ∆ψC β sin ∆ψC

−γ sin ∆ψC cos ∆ψC − α sin ∆ψC


x
x′


s0

(B.7)
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Following is the particle tracking simulation logic used in R (Only the main details of the

code are included here).

###################################################################

f o r ( i in 0 : ( Nturns−1))

{

e = nrow ( x )

#Tune i s changing f o r f i r s t 250 turns as a ramp func t i on

i f ( i <= 250){

s t r = 0 ;

nu = nu1 + ( i /250)∗dnu ;

no i s e = 0 ;

}#Sextupole s t r ength i s changing f o r next 250 turns

as a s igmoid func t i on

e l s e i f ( i <= 500){

s t r = f s i g [ ( i −250)] ∗ s t r t o t ;

nu = nu0 ;

no i s e = 0 ;

}#Noise e x t r a c t i o n f o r remaining turns

e l s e {

s t r = s t r t o t ;

nu = nu0 ;

no i s e <− data . frame ( betx∗ r u n i f ( e , −noi , no i ) )

}

##########################################

# matrix r e p r e s e n t a t i o n f o r t r a ck ing over one turn
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a <− cos (2∗ pi ∗nu)

b <− s i n (2∗ pi ∗nu)

c <− −b

d <− a

##########################################

#Fie ld pe r tu rba t i on s

dpx <− betx ∗( s t r ∗xˆ2)/2

px1 <− px − dpx + no i s e

u1 <− a∗x + b∗px1

px <− c∗x + d∗px1

x <− u1

xpx <− data . frame (x , px )

##########################################

#Turn and e x t r a c t i o n data a f t e r each turn

tdata = xpx [ which ( xpx [ 1 ] > −0.012) , ]

edata = xpx [ which ( xpx [ 1 ] <= −0.012) , ]

i f ( nrow ( edata ) == 0){

edata <− data . frame (0 , 0)

}

x <− tdata [ 1 ]

px <− tdata [ 2 ]

turndata <− data . frame ( i +1, tdata )

exdata <− data . frame ( i +1, edata )

}

###################################################################
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